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ABSTRACT

The temperature "_"_r_ in a stellar corona is computed under the circumstances

that energy is supplied outward from the base of the corona only by thermal conduction.

The heat fiowequatlon is solved analytically under a variety of circumstances. In a

corona of very low density the energy consumed by expansion of the corona can be

neglected and -T'( v--_ 04 r - _/7 , as in Chapman's oNginal static coronal

model. The result is a supersonic stellar wind with a velocffy V (oo)

same order as the gravitational escape velocity _ V_

medium densffy and sufficiently low temperature that

to W , a near region, in which "T_ r.,_ _c

distance outward from the star before the far region

of the

. In a corona with

V ('oo) is small compared

r" - 4/-/ extends for some

"T'Cr) r - 2/7
J

takes over. The result is a supersonic stellar wind velocity V ( oO ) of the same

order 8._ the characteristic thermal velocity Co at the base of the corona.

+In a corona which is exceedingly dense, an intermediate region in which -1"(_r) (_ r"

appears between the near and the far regions, which has the result of extending to large

distance the point at which the coronal expansion becomes supersonic. In a corona

* This work was supported by the National Aeronautics and Space Adm[nlstratlon under
Grant NASA-NsG-96-60.
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which is exceedingly hot ( Ca _'_ w)"_ the expansion becomes so violent

that thermal conduction becomes negligible and the behavior of the corona is approxi-

mately adiabatic.

It is shown that any effect which tends to reduce the thermal conduc-

tivity of the coronal gases at large distance from the star has the effect of enhancing

the velocity of the stellar wind.

Comparison with Chamberlaln's earlier discussion of the solution of

the momentum and heat flow equations in his "solar breeze" model shows that he made

two self-consistent errors in his assumption that the energy flux in the solar wind is

identically zero and that the gas motlon is adiabatic at large radial distances from

the Sun. It is shown that neither assumption 'is correct in a corona of finite density.

It _sshown, however, that the analytical form m(r,) _ -_/r suggested by

Chamberlain is obtained in the limit as the density of the corona is made large

without limit, in which case all motion in the corona approaches zero.

Appllcatlon of the solutions of the heat Fiowequation to the sun

--- assuming that the solar corona is heated solely by thermal conductlon---show that

at least under present conditions the solar corona and wind would lle in the middle

ground between high and low density and temperature. Assuming that they have

coronas heated solely by conduction it is suggested that some of the giant stars with

the low gravltatlonal escape velocities, may fall into the high density case, and

certain dwarfs into the low density case. Some of the very active stars may fall into

the high temperature quasl-adlabatlc case.



I. INTRODUCTION

In a previouspaper(Parker,1963ahereafter referredto as PaperI) the

massand momentumconservationequationswere solvedfor a stellar corona in which

the temperaturewas taken to be a given function m(r_ of radial distance from

the star. Thepresentpapergoeson fromthere to considerthe form of m_r)

in a corona in which energytransport is limited to thermal conduction. The paper

is written from a purely academic point of view for the purpose of exploring the presently

unknown dynamical properties of a conductive stellar corona. It is an open question at

the present time to what extent the outer solar corona is supplied by thermal conduction

from the low corona, as opposed to direct heating of the outer corona by the dissipation

of wave motion originatlng beneath the corona.

In this connection it is easy to show that thermal conduction is

probably important, but it has not yet been possible to establish whether wave dissipation

is, or is not, important, too. To show that thermal conduction is at least important,

note that the observed solar wind strength at the orbit of Earth (Shkiovsklb 1960_

Gringauz, et al, 1960; Bridge et al, 1962_ Bonettl, et al, 1962_ Neugebauer and Snyder,

1962) is of the order of 500 km/sec and, say, 5 or more |ons/cm 3. The solar corona

is observed to be at least as active at low solar latitudes, whence comes the solar

wind observed near the plane of the ecliptic, as it is at high latitudes. Hence an upper

limit to the energy carried away by expansion of the corona into the solar wind is

obtalned if it is assumed that the solar wind has the observed strength everywhere around

the sun that it is observed to have near the ecliptic. The result is an estimated efflux

1035from the sun of 7 x protons,/sec in the solar wind. The energy (gravitational

energy plus kinetic energy) consumed by each proton in the wind is 5 x 10-9 ergs,
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1035 1027so that the efflux of 7 x protons/sec means an energy consumption of 3.5 x

ergs,/sec by the expanding corona. Radlation losses above the base of the corona are

1027somewhat less than th|s, so 3.5 x ergs/sec is a rough order of magnitude figure

for the energy that is supplled to the outer corona.

tosupply -- _" _-I'a)L'_T)_ across

temperature is -_ and the temperature gradient is

Now thermal conduction is expected

_" -_ _ where the

(_"r), Suppose

that _ = _ _::::_O• Billings and Lilllequist (1963)suggest that _T)a

may be of the order of 3° per km, Using (2) thls leads to an energy flux by thermal

conduction of 1.1 x 1027 ergs/sec if -'1"_ = 1 x 106 OK and 6.2 x 1027 ergs/sec

if -To = 2 x 106 OK. Thus thermal conduction could be the sole source of

energy to the expand|ng outer corona (see discusslon in Parlm r, 1963b). But the

questlon is clearly open. Contemporary theory of coronal heating by wave dlssipation

(see for instance Osterbrock, 1961_ Whltaker, 1963) is not sufficlently quantltative

to be able to help in the decislon. The one remaining approach to the problem is

to solve the momentum and heat flow equations with simple assumptlons concerning

the configuration and structure of the corona to see if the observed solar wind

velocity and dens|ty at the orbit of Earth can be accounted for in a quantitative way

by the coronal temperature and density observed at the sun. A rough numerical invest|-

gatlon was begun by de Jager (1962) using Chapman's temperature distrlbutlon

(Chapman, 1957, 1959) for a static corona. Noble and Scarf have recently begun an

investlgatlon of the solar corona and solar wind by numerical methods, giving a

proper slmultaneous solutlon of the momentum and heat flow equations. Their first paper

(Noble and Scarf, 1963) on the problem shows that no energy source other than thermal

conduct|on seems to be required beyond a couple of solar radii, withln the present
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uncertainties in the observations. However they point out that further investigation

into some of the evident complications should be carried out before any final conclusion

iS reached.

Altogether, then, it is clear that thermal conduction is an important

process in determining the dynamical behavior of the solar corona. It may be presumed,

therefore, that thermal conduction plays an important role in the coronas of many k i nds

of stars other than the sun. In consequence of the evident widespread importance of

thermal conductivity in stellar coronas the present paper undertakes a general study

of the dynamical properties of the hypothetical stellar corona in which thermal conduction

is the only form of energy transport beyond some given radial distance x" = _.

The purpose will be to examine the various qualitative dynamical features of the con-

duction corona under different circumstances of temperature and density. We shall

be concerned more with limiting cases, to illustrate the various features, rather

than extensive numerical results for any single model. Thus the present study will add

little or no quantitative information to the question of the dominance of thermal con-

duction in the solar corona, discussed above. Rather it is aimed at illustrating the

various asymptotic classes of coronal behavior so that the position occupied by the

solar corona may be seen in its proper perspective. The aim is also to illustrate the

dynamical possibilities available to stars other than the sun, many of which must have

coronas with rather different values of density and temperature.

Consider a stellar corona in which "T'_r) is assumed to be deter-

mined by the stationary heat flow equation*

* See discussion and derivation in Appendix I.
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(i)

3
where _ is the number of ions per cm and V

determined from "T'(_',_ by the methods outlined in I.

(Chapman, 1957, 1959). It is assumed throughout that "-T'(oo._ = 0.

obviously certain special cases one can imagine for which "T" (_o)

be essentially zero, but they will have to be taken up elsewhere. The thermal

conductivity is denoted by I_ (-7") and the numerical coefficients on the

right hand slde of (1) are appropriate to fully ionized hydrogen, for which (Chapman,

1954; Spitzer, 1956)

is the velocity of expansion,

Radiation losses are neglected

There are

may not

= ¢ js (2)

As in the previous paper the discussion will be limited to coronas in which the thermal

velocity is small compared to the gravitational escape velocity, so that the corona is

tightly bound to the star by the gravitational field.

Now the heat flow equation has been discussed previously by

Chamberlain (1961) in connection wlth his own ideas of the dynamics of the solar

corona. Unfortunately he based his numer|cal solutions on the assumption that the total

energy flew from the corona to r" _ Oo ;s exactly zero. That ;s to say,

Chamberlain postulated that the expanding corona forms the perfect thermal insulator,
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so that with ]0 6 OK in the corona and 0 OK in interstellar space there is no heat transfer

between. He also postulated that the flow was exactly adiabatic at large r •

rather than solving the heat flow and momentum equations there• so he did not discover

the error of his basic assumption.

show that the energy flow to r"

The analytical solutions given in the present paper

= co is not zero• with the result that the stellar

corona heated by thermal conduction expands into space with supersonic velocity,

rather than with an evaporative velocity going to zero like 4/ _ _/a as

suggested by Chamberlain. It is Tnteresting to note that Chamberlalnts

velocity dependence turns up in the present paper as the limiting form of the supersonic

solution of the momentum and heat flow equations when the ratio of density f,o thermal

• becomes large without limit.

For any finite N/_

conductivity, N/_

comes about is as follows:

sonic at some critical distance

everywhere beyond; the distance

The way in which this limit

the expansion becomes super-

(see discussion in I) and remains supersonic

increases without limit as _/_ _ aD)

so that the supersonic portion of the solution moves out of the picture• leaving behind

the evaporative solution v _' _./f" jl_ discussed by Chamberlain. Of course,

the velocity of expansion goes to zero at the same time that its form approaches

_. / r t/_ • so it is probably just as meaningful to say that in the limit as

N/_ _ _:b the corona approaches stasis.
S

II. BASIC CONSIDERATIONt, IN THE SOLUTION OF THE CORONAL HEAT
FLOW EQUATI ON

In order to carry out an analytical solution of the heat flow equation

(1) it is necessary to consider the limiting conditions under which its solution may be

desired. The study of the momentum equation in Paper I for arbitrary m(r')
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showed two opposite extremes for expansion of a stellar corona. The first extreme is

that as the temperature at the base of a corona is increased, a point is reached at which

the effective enthalpy of the gas becomes equal in magnitude to the negative gravita-

tional energy. When this occurs the corona is no longer bound to the star by the

gravitational field. The expansion starts with the velocity of sound at the base of the

corona, and the equivalent de Laval nozzle (see Paper I) looses its throat. The important

point is that the energy loss to the star becomes so great with increasing coronal

temperature that the energy transported by thermal conduction becomes negligible.

The heat flow eqn. (1) becomes more or less irrelevant. The expansion of the corona

becomes approximately adiabatic, and this case has been dealt with at some length

elsewhere (Parker, 1960, 1963b). Adiabatic coronal expansion has the general

property, already described, of starting with supersonic velocity at the base of the

corona and decelerating outward to _" _ Oo . Any enthalpy excess

over the gravitational energy is converted to kinetic energy. This circumstance of

an overheated corona may perhaps have some application to the coronal outburst

from the sun following a solar flare. This has been dealt with elsewhere, too

(Parker, 1961). Altogether_ then, the limit of high coronal temperature does not

involve the heat flow equation in any fundamental way and it has been dealt with

previously. It will be discussed no further here.

The second and opposite extreme is in the ITmlt of low temperature,

in which the corona becomes to tightly bound gravitationally that the energy con-

sumed by its expansion is negligible compared to the energy transported by thermal

conduction. In this case thermal conduction is the dominant factor in determining

T(. r) and the effects of the heat flow equation are most readily
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Thus it is with the lower coronal temperatures that we shall be .most con-

cerned here, and consequently it is advisable at this point to consider a little more

closely how the energy C) _'/_/oVo_i(G /_ _/_)] consumedby, coronal

expansion compares with the energy flow 0 _t_ (-to _ _ T_] by thermal con-

duction. Let _. represent the mass of the star, a the radius of the star,

and iv] the mass of a hydrogen atom• It may be seen from either eqn. (25) or

from eqn. (42) of paper I that very roughly

_ r'l V. --" o(-

as T_ becomes small. In general

o_er of 10 or more, so that decreasing "To

is of the

to one half means a reduction in

Va

to _ TM

by a factor of 10+4 . On the other hand the thermal flux is proportional

, which means a reduction only by about a factor of 10. At lower

vo , and hence No _o _'( CO_, _ I_) decreases even

• Altogether, then,

"To , the energy

tempe ratu res

more rapidly in comparison to _" (To) ,, T,

it is evident that in the limit of low coronal temperature

consumed by coronal expansion may be made arbitrarily small compared to the energy

flowing outward through the corona by the mechanism of thermal conduction. In the

limit of small coronal temperature and density, the coronal temperature

approaches the static temperature distribution

"T'(,') = --I].
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originally proposed by Chapman (1957, 1959) for a static model of the solar corona.

To facilitate solution of the heat flow equation (1) it is convenient

to express it in terms of the same reduced variables as employed in Paper I in the

discussion of the momentum and mass conservation equations. Thus let a. desig-

nate the radial distance at which the heat flow equation is assumed to become valid

and put _ = ¢"/& . Let cz 2kT/M -

r_ -- /_/No • The subscript zero is used to denote the value at :_ -" t

Then write _o _ _ (To) and

](T)-- f( '/co9

sothat f('cY _oz) -- (c V d--':'_') s/2

flow equation (1) may be written

for fully ionized hydrogen. The heat

J£

upon using the condition for mass conservation, eqn. (6) of Paper I.

momentum equation (5) of Paperl for (c7 _) c_/_

into (3), and integrating yields the usual energy equation

Solving the

• substituting

(4)
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transported by thermal conduction outward from _ =" '1

that the temperature falls to zero at
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is the energy flow persteradian at _ _ O . The

represents the order of magnitude of the energy flux

• It is assumed

_ c:_ ,i.e. Ci(_)--O .

!11. LOW DENSITY AND LOW TEMPERATURE APPROXIMATIONS

The simplest asymptotic class of solutions of the energy equation (4)

is in the low_ approximation. For any given valueof "To , the

denslty _'_o may be made sufficiently small that any quantity multiplied by

7.
/'_/o Yo a i/ /_o _ _ may be neglected. With f (C_'/6o _')

: _¢. a/__o_-_s/a, appropriate for ionized hydrogen, and wlth c _'{._

= Co , integration of (4) yields

¢'CI) = ¢°
Ii7 •

The energy flux is

(6)

The expansion v(l) of the corona follows now from eqns (39) and (40) of Paper I

with //_ - 21/7 . The velocities va and v (¢_J follow from eqns.

(42), (43) and (45), (46), and are illustrated in Figure 4 of Paper I. As already noted,

this low density approximatlon was applied by de Jager (1962) by numerical methods

to the expansion oF the solar corona. It is based on the assumption that the expansion
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energy is small compared to the conduction energy

(;1

which can be achieved for any "-/-a by making /_o sufficiently small.

Hence we refer to it as the low density approximation.

The condition (7) can also be satisfied for any

sufficiently small, but if this involves making "To

"_ iO, then v _(_) <

approximation is available. With

No by making

so small that w2_Co_"

_v z and the much better lo._.._wtemperature

_/C_ 7> iC) there ;sa regionW/

near the star where 5¢. _(:_)/Z and v _(_:)

are both small compared to vv _/ j_ In this region the energy equation

(4) may be approximated as

(8)

This equation is valid out to

to _¢_'/ _

_¢_/ _ ) and _'(_)

the critical point. Hence the distance

same general order of magnitude as

Now the total energy flux

_t. , where c _"(_) becomes comparable

. We recall from eqn. (8)of Paper I that C_ _:),

are all of the same order of magnitude at

_ to the critical point must be of the

_-m at _- -- _0 is

made up of the convection of kinetic energy and of thermal conduction. Denoting
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- -_ _) ÷ (9)

Let it be assumed that the temperature is sufflclently low that

(10)

Thls is a weaker restrlctlon on N.a and V, than (7). Since v '_Co_

is presumably comparable to v (_) at the crltical point near _j. , it follows

that all the terms on the right hand slde of (4) must be small compared to

by the time _. is reached. Under these condltions (8) is valid for all _: __ _-

The term in _v_'/ _ on the right hand side of (8) isnot correct beyond _l_

but it is negllglble there so incorrectness causes no error.

1.

Integration of (8) subject to the boundary condltlons that c _(]) _ co

and c_'(_) = O yields

:/?

(11)

where

7N, v°a _ H_ _
_) r_ ' (12)

41I'.aT.
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(_ _ @ _--_ _ in order that C_(_) be real everywhere

The energy flux transported by thermal conduction to _ --c_

is readily shown to be

_r_/_,_¢ :_r,_a'_o (13)

The conduction flux across is readily shown to be

(14)

which is larger than by just the amount of energy _o_. a _" _ w _"

consumed in lifting the gas out of the gravitational field of the star. In terms of the

definition of (_ the basic energy relation

7
(15)

serves to determine v_ as a function of _o and "To , or if y_

i_ known from the momentum equation, it serves to determine (._ . Now as we

have already noted, the low temperature approxlmaHon is based upon the inequality

(10) which is a weaker condition at low coronal temperatures,

than (7). If the coronal temperature is not low, then of course

and the two are equivalent, requiring small

pressed in terms of _ as

 ,/co

= 0(.,')

/_/o . The condition (10) may be ex-
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This inequality establishesan upper limit on (_ for the validity of the low

temperatureapproximation. Note that only as w _/C_ _" _ Oo can d._ --_ _.

Thereare several implications of (10)and (16) that shouldbe noted.

The inequality (16) requiresthat C]) _ _. . It is obvious from (15) that

_ (_ _ so that altogether _ _ C_ _ _. . The non-

vanishing of _) follows from the fact that with -_ _ O we must

have vo nonvanishlng. For if Vo = C) , then c_'C _ _" _''z/_
s

and the momentum equations predict a nonvanishing Vo , in contradiction to

+

the assumption that

Now it follows from (11) that the outward decline of

must have an effective exponent ,/_
r

/_ _- 4/7 close to the star and /_ _'_

of the two regions depends upon the value of

that neither V'+ nor v ( ao

this range. Thus for a given

approximately independent of _)

principally a restriction on To

somewhere between 2/7 and 4/7, with

2/7 far away. The relative importance

(._ . It was shown in Paper I

is very sensitive to the value of _' in

, both Vo and v Coo') are very

• Thus for a given C_ , (16) is

, placing an upper l_mit on -/"o for the

_Jo oncevalidity of the low temperature approximation. Eqn. (15) then gives

"To

N+

has been chosen (so as to satisfy (16) of course). The maximum value of

occurs for the maximum C_ permitted by (16) for the chosen -To .
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The lower is "To the closer may

a little differently by considering that as

must become small. To satisfy (15) it is then necessary that No

For intermediate values of _) , say

large, requires through (15), that To

No

through (15), may satisfy (16) just as well in this case.

maximum value of /_/,, for any particular temperature -To

a very rapid rate.

making /'_/_

automatically satisfies (16). Of course, a moderate

For moderate or low

declines like _ - 41_

is as large as (16) will permit.

is near 1.0 and _'(_)

the star.

become large at

(._ = 0.5,

must become small, which

• requiring a moderate

Altogether, the

occurs when (_)

this means that (_

for some distance out from

Consider now the relative magnitudes of the d;stance _:_. to

the critical point, the distance _j to the point where ¢ _'(_.)

becomes comparable to _ _'/_: , and the distance _ _.

where ¢:_ _ _) , given by (1 1) flattens out from the _- ¢/7

the star to the _ - z/_ at large rad;al distance. Then

to the point

near

_ is given by

eqn. (8) of Paper I, and _.1 and -_ _. may be defined to be

(17)

" I Q
(18)
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It was already noted tha;r :_i. is comparable to _i because C_'_' _)

and iv X _ are comparable at _ . More precisely, if e.'(_.) -- _lT_,l_l

then solution of eqn. (8) of Paper I yields

_=_ 0(_.). (_9)

To demonstrate the relative magnitude of

l that

I!t , note from the definition of

vl ,' (r;,)
ill

Since V l CO0") is of the same order as W l/ I, , we have

I<

Then if (10) is io be satisfied, it follows that _ 1. < < fc: • _.t . It

follows from the definition of !ill that if f_. _ _l , then (_- t_') _

"_ "_ (_j) , which is evidently equivalent to the statement (16). Physically

thls means that the reg ion _._ i _'i) near the star in which

-v'terminates well before the critical point. In the vicinity of the
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=/7
(20)

From eqn. (8) of Paper I it follows that

(21)

This distance becomes very large as @ _ "I

critical point is, from eqn. (9) of Paper I

• The expansion velocity at the

.,ck) =

(22)

Noting that _ I_) is of the same order as v

matter to show that (16)and (_- (_)_. _'_

is equivalent to

7" ( _D , it isa simple

are equivalent, which in turn

(_ , (23)
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Consider now the expansion velocity v(_].) that results from the

temperature distribution (11) of the low temperature limit. The first approximation,

given by eqns. (13) and (22) of Paper I, will be sufficient for the present purposes. De-

fine /-(_) as

IC_)- _ J_ _
(24)

with C'(_.) given by (11}.

velocity in _ _ _ is

Then from eqn. (13) of Paper I, the expansion

Vl

(_)

The function I(_) is related to the incomplete beta function and is expressed

in terms of hypergeometric functions in Appendix ]_. The density in _ < [c

is given as

Putting :_ -- _[¢ in (24)and using (22) for v (_c) it follows that

4 O- coy
(26)
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2

V° =%

and

In the region beyond _ c
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given in Appendix I. Thls serves to determine the mass flow

and, upon substffution into (15), it relates (_)

eqn. (22) of Paper I as

to

the expansion veJoc_ty foIJows from

_I_

where

(27)

j l (28)

_([) given by (11). The function J([) be expressed inwith c can

terms of hypergeometrlc functions and is glven in Appendix I. Noting that (11)

approximates to (20) everywhere in _ > _c , it follows that

(29)

position "_

To illustrate the results Of the formal calculations under the low density

and low temperature ( O _ (_) _/ -{ ) approximations the

of the critical point and the velocities o C_ /J.

"l (C_O)/Co are computed from the temperature distribution
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given by (11) and plotted in Fig. 1 as a function of _v

denslty n CI_) _ 2. is plotted in Fig. 2. The values

i Co . The asymptotic

= 0, 4/7, 1.0 were

chosen to illustrate the full range of variation of _) . Since (23) must be

satisfied, it is obvious that

only to exhibit the mathematical boundary of the domain of

is valid only for _v _'/_0" _, _ , and of course _)

W zl/_ol. . For the intermedlate case _)

thermal energy is consumed by coronal expansion, the other half flowing out to

= 1.0 has no physical significance. It is included

etc. C._ = 4/7

= 0 is valid for all

= 4/7, about half of the

--- CO. There is the interesting matter of the cross-over of the density curves

in Fig. 2 in the vicinity of _ Co _ 5 or 6. At large _v _:_

the curve for

C#=

as

at the minimum value of

= 1 lies below the curve for _) = 0 For the reason that

declines outward more rapidly for _) = 1. At smaller

the curves are reversed for the two reasons that with C_ --- _.

the minimum value of _v _'// r._ for _. = .I. (given

by eqn. (41) of Paper I) is approached more quickly and the density

W_/_ i" (givenas [f_/(4-_. l¢/_'_ t_

by eqn. (47) of Paper I) is larger.

i

=

=

_i

=

_ i TO illustrate the range of validity of the approximations used in this

section for a star with one solar mass we have plotted the thermal energy flux

_. _ o _ _ / _ ergs/sec steradian in Fig. 3 in comparison with the

energy /_o v, B _" /_ _v _" ares/sac steradian consumed in lifting the expanding

corona in the gravitational field of the star. The numerlcal values of v_

(shown by the broken line in Fig. 3(a)) were computed for an isothermal corona

(/_ --" O'_ because Such values are typical for /_ anywhere between
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zero and 4/7 (see Fig. 4, Paper I). Fig. 3(a) was computed for

for which the maximum temperature is 5.62 x 106 OK :_ and Fig. 3(b) for

--- _ _ , for which the maximum temperature is 1.4 x 106 OK. A typical

density in the lower solar corona, _" _ _- _:'_ is 108 atoms/cm 3. It is readily

seen from Fig. 3(a) that the energy consumed by expansion is larger than that transported

by thermal conductivity for

less than about 0.7 x 106 OK,

To _ 0.9 x 106 OK, i.e. (7) is satisfied only for To

On the other hand, a star with a coronal density of

106/cm 3 will fall within the low density approximation for all -]-Q .

If it is assumed that the corona is heated by thermal conduction only

beyond Zl 1:_ , then Fig. 3(b) is applicable' The density of the solar corona

at _ is observed to be of the order of 105 atoms/cm 3 (Van de Hulst, 1953),

which leads to the conclusion that the energy consumed by expansion may be neglected

if -]'o L" 0.3 x 106 °K.

It is evident from all this that the energy consumed by expanslon of

the solar corona is of the same order rather than much smaller, than the thermal energy

flux transported by conduction. The solar corona seems to be too dense to fall into

the low density limit, and somewhat too hot to fall into the low temperature limit.

On the other hand, we have already pointed out that the solar corona is not so hot

that it falls into the high temperature ad|abatlc limit. In the next section we take

up the high density approximation.

IV. HIGH DENSITY APPROXIMATION

In this section we undertake the integration of the heat flow equa-

tlon (4) under the circumstances that No is taken to be extremely large while

"]-_ is maintained at some moderate value. The effect of making _o
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large is to make v (_) small, so that the high density approximation consists of

integrating (4) neglecting only the term v 1"(_) on the right hand side. It con-

stitutes the next order of analytical complexity after the low temperature approximation.

As we shall see, the solar corona is not sufficiently dense as to allow application of

the high density approximation, but other stars with somewhat denser coronas may well

fall into the high density category.* The principal interest in the high density approxi-

mation is that it illustrates the behavior of the stellar corona in which the heat supply

for a given temperature T_ becomes small. The expansion velocity then

exhibits a maximum at some intermediate distance and declines for a time before

becoming supersonic at large distance. It is shown that in the limit as No/_o

oo the expansion goes over into the a_gebraic form v (, _ ) = V.1" _ "

proposed by Chamberlain (1961) for the expansion of the solar corona, though of course

v I _ O at the same time.

1. Semi-Quantitative Discussion

As a consequence of the greater complexity of the high density approxi-

mation, there are a number of qualitative and semi-quantltatlve points that are best

cleared up before presenting the formal solution of the energy equation. They are

taken up under the paragraph headings which follow.

(a) The Nonvanishing of F-_ :

A fundamental point to be kept in mind throughout the discussion of

the high density approximation is that F-_ is non zero for all finite N o .

*It should be noted that radiation losses become a serious concern when the density

becomes, say, a factor of ten greater than the solar corona. This complication will

not be included in the present formal solution of (4).
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The nonvanishingof F_ is readily established by noting that for any

no matter how large, the energy equation (4) may be reduced to

,,c.,,v
i_I " ---

by choosing

of vo , discussed earlier. The boundary condition

C_oo_----'C) means in this case that F-_ > O

7"o

Hence

"To small enough.* The reduction follows from the rapid decline

. We assume that increasing

can only increase the total energy flow in the corona to

for all higher -T-o . QED.

made the error of supposing that

As was pointed out earlier, Chamberlain (1961)

_'--_ was identically zero for all finite

and _ . He made the supporting assumption that the coronal expansion

becomes exactly, adiabatic at large ._ . The low density and low temperature

approximations have already demonstrated that the flow at large _ is not at all

adiabatic . The same will again be true in the high density

approximation.

* This is a purely formal argument on the mathematical properties of eqn. (4), so

the fact (4) may not be physically correct for a corona of arbitrarily low temperature

is irrelevant.



-23-

(b) The Near Region:

It hasbeenshownthat the energyflux

flnite Na and vanlshes only in the limit as

hand, the energy flux transported across _

of the order of _'o _ _ , which is essentially independent of

With large N_ only the small portion _ of /_'o _

transported to

that most of

of the star, which is N°vo_

_'-_ is nonzero For all

_o _ ¢z_ . On the other

l by thermal conduction is

is

by conductlon and convectlon. Hence, it is evident

must go into lifting the gas in the gravitational field

_ _v _" . Hence, in order of magnitude

Q_o_ _ I_/ -'_

It follows that for a fixed , Vo varies inversely with /_a and

becomes arbitrarily small as _/o becomes large. The expansion velocity

generally inversely proportional to N o for fixed To . it follows for

sufficiently large _/o , that in the region near the star both the term _"_

and the term in v _'(' _) may be dropped from the right hand slde of (4). The

problem may be Further simplified with the assumption that the temperature of the

corona is fixed at some moderate value, say _ _'/C_ _" _ _. O . Then

for some dlstance out From the base of the corona the term ¢_ (_) may be

neglected compared to _ _'/ and (4) may be integrated to give

(30)

for _ '_ _ is proportional to v_ ,so that the veloclty v ( _ ) is
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Now in this expressionfor ¢:_'_ _ ) it must be required that (_)

is neither much greater than 1.0 , nor much less than 1.0. For if, on the one

hand _ were much greater than 1.0, we would have _._' (_)

vanishing near the star, which would require an enormous heat sink at the point of

vanishing.

I
1.0, C

No such sink exists. If on the other hand (_ were much less than

(_) would qulckly level off at C=_.(_ . _))V) _ (.o_-

and a nearly isothermal coronal would be the result. But an isothermal corona ylelds

a va which is much too large to satisfy (30) as No _ _o . Thus, we

conclude that, as was shown for the low temperature approximation, we must have

_ _ as No= becomes large. It follows that

in the near region. The thermal flux from the base of the corona is then approximately

and in place of (29) we may now write

Thls:expresslon determines V, as a function of _o

With the expression (32)for ¢ "_(_)

and "j-= .

in the near region it is
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becomesequal to on the right hand

=

The near region is defined to be

equation for conservation oF mass

(34)

• in it the velocity is given by the

where nC _)

Paper I) to be

is determined by the hydrostatic barometric equation (see eqn.(12),

(36)

It follows at once that the coronal density and expansion velocity at the outer end

of the near region are

(37)
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and

_, k5 _°../ - (38)

For fixed W,V_" _", V (_:l) is proportional to

proportional to No in the near region.

(c) The Intermediate Region:

vo , and hence inversely

to No as No becomes large while "To

that Vo

The energy relation (33) declares that Vo is inversely proportional

is fixed. We know from Paper I

can be made small for fixed -/-o only if the outward temperature

decline in the corona becomes as steep as

by the intermediate region, which lies beyond the outer boundary

of the near region. The intermediate region, in which c _ (_)

. This is the role played

is the distinguishing feature of the high density approximation. We will have more to say

on this later.

In the vicinity of _t.

cannot be neglected on the right hand side of (4).

, and beyond, the term

We obtain

No,,°a" M [ ,(_) __._Z _-_ - .

It is obvious from this differential equation that c _'(_) must decrease like

_l/_ in the intermediate region. For if c.z(_) decreased less

rapidly, the right hand side would become positive and ¢- _ (_) would then



increase outward from the star. If

become negligible again, leading to

contrary to the assumption that c

Now if C._'(_) is proportional to

-S/_.
equation decreases like
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C_'(_) decreased more rapidly, it would

to either term on the right hand side, both of which decline only as fast as

Equating the right hand side to zero• then• yields

-z(_) _ _ -4/? which would be

_-_ _) decreased more rapidtythan w _'_

_-/ _ , then the left hand side of the

• which rapidly becomes negligible compared
-d,

5 (391

throughout the intermediate region. It ;s th;s _/ _ temperature dependence

through the ;ntermediate reg;on that leads to the small value of v. required by

(33) for large No . The gas flow through the intermediate reg;0n ;s approxi-

mately adiabatic, since thermal conductbr_ represented by the left hand side of (3),

rapidly becomes negl;gible w;th increasing _ . If v _ (_) is included

on the right hand side of (4), the result is the wellknown adiabatic flow relation

- = 0 (4o)

If (39) were exact• rather than only approximate• the hydrostatic

barometric equation would give
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(41)

in the intermediate region. The equation for conservation of mass would then give

(42)

The values of n C _ L)and v _ _.) are given by (37) and (38) respectively.

As a matter of fact, C _"_ _) must be a lfftle less than (39) because of the neglect

_'_) Thusof the left hand side of (4) and because of the neglect of v

C _) must decrease a little more rapidly than (41), and the velocity is

accordingly somewhat greater than given by (42).

graph (d).

This is discussed further in para-

right hand side of (4) become comparable to /_ .

vicinity of -_ = _3 , then in order of magnitude

The intermediate region terminates where the individual terms on the

If this occurs in the

_3 is defined by

But the numerator of the left hand slde of this equation is approximately equal to the

energy flux _ transported across the base of the corona. Hence
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(43)

(d) The Far Region:

Beyond _ , where /E-" can no longer be neglected on the

right hand side of (4), the terms which become negligible are C _'(_:) and

w_'/ _ ,bothofwhlchvanlshas _ _-_ _ . Then if _-_

is written in the form (9), the energy equation becomes

Since _-_ > 0 _ it follows that _ and _, (_) cannot both be ident|cally

equal to zero. Let it be supposed that F"_ _ 0 • It is an easy matter to show

from thls that v (co') _ C) , for neglecting v _" , the energy equation yields

7 E',
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It was shown in Paper I that for any outward temperature decline slower than

asthe expansion velocity approaches a constant v (a=) _ 0

- 2/7
large. The temperature here declines only as fast as

is nonvanishing. The only other possibility is now that _ : 0

• this automatically gives v (_) /_ 0

becomes

Hence v _ (_)

• but since

• QED. Since

C=(Oo) _- 0 } it follows that the expansion becomes supersonic in the far region•

There must exist a critical point at which V I" (:_) crosses over

C_'(_) . The temperature• given by (39) in the intermediate region is so high

that the total enthalpy plus the gravitational energy of the gas is

2,

- -- : 0 (441

We know from previous discussion that when this is the case• the expansion goes

supersonic very soon after c._'(_) declines less rapidly than _/.-'._ . Thus,

we expect that in general order of magnitude

(45)

and

(46)
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" (47)

(48)

It is immediately evident that the coefficient 2/5 on the right hand side of (39) may

not be entirely correct toward the outer, side of the intermediate region. It is readily seen

from (40) that C_ _) is probably somewhat less than given by (39), with the

consequence, mentioned earlier, that n C _) tends to be less than given by (41).

The velocity v t. (_) tends to be larger than given by (42), so that it reaches a

value 0 _ c, tC_ ) 1 at _'5 " The important point is that the small

deviation from strictly adiabatic flow is an essential qualitative feature of the coronal

expansion.

(e) Discussion:

limit of large

given by (33).

outward from

be neglected.

to a maximum

The arguments presented in the foregoing paragraphs show that in the

N_ the velocity Vo varies inversely with /_/o , as

With _ _ _ '_ _ C_2"/Z most of the energy is transported

-- i by thermal conduction. The convection of enthalpy may

The velocity increases throughout the near region C_,-_l.)

v (, _:Z ) given by (38) at the transition from the near to the

intermediate region. Throughout the intermediate region the velocity declines. The

conduct;on flux decreases outward through the near region like _/ whereas
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the convection of enthalpy decreases only as fast as _-/_: _/_ . The near region

ends where thermal conduction falls below convection. In the intermediate region

thermal conduction may be neglected and the gas motion is approximately (but not

exactly) adiabatic. The expansion velocity decllnes outward through the intermediate
v

region almost as rapidly as given by (42). The intermediate region ends at _3

where the convection of energy becomes comparable to

f'lux _ is nonvanlshing for all finite _

_"_ . The energy

and guarantees that the expan-

total enthalpy that it has at

point lles not too far beyond

nitude* Of _v y _3

sion velocity will be supersonic at infinlty. The smallness of the :thermal conduction

flux at _ _1 suggests that the expansion proceeds to _ = oo with only the

_3 . Consequently we suggest that the critical

_ and that v _(_o) is of the order of mag-

It is Of some interest to consider the form of

_O . Eqn. (33) requires then v_, _ ONo

This reduction can only be brought about by the length _

region becoming large without limit. Then the flux of kinetic energy at

vLC_) as

llke -_//_Q •

of the intermediate

is

0 ( _'_° ) (49)
"

* It should be understood 'that the term "order of _"magmtude" as used through this paper

is meant in the formal analytical sense. It is not meant necessarily to imply

approximate arithmetic equallty.
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= _ cannot be more than the conduction flux

, which is smaller than the above expression by "_/_:3 3/_.

The energy flux at

goes to zero as _/o _ OO . The result of IN/o -_O

_'L _ Co so that the supersonic region beyond _I_

ture.

== CO is predominantly kinetic energy, and this kinetic energy

is then that

moves out of the pic-

The approximate conditions given by (42) and (43) become exact and extend all

the way to

expansion proposed by Chamberlain (1961) as applying for all finite

have shown here that it arises only in the limit as No _ (_3 .

in this limit, that v _ _) _O for all

stasis.

= _rO . We recognize this as the adiabatic subsonic coronal

N a . We

We note also,

, indicating that the corona approaches

It is of interest to see under what circumstances the intermediate region,

which is characteristic of the high density approximation, may be expected to occur

in the corona of a star. There are a number of requirements for the existence of the

intermediate region. In the first place the corona must be tightly bound to the star,

or else the whole corona will be moving outward with supersonic velocity. This

requires that the enthalpy plus gravitational energy in the low corona must be rather

less than zero,

)- z (51)
Z
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It follows from (34) that this is just the requirement for the existence of the near region,

i.e. _s. "_ 1 . In addition to this, the intermediate region is subsonic,

requiring that

The velocity v ( _ _ ) follows from (42),

is given by (39). Thus (52) becomes

¢ ( ]_.( ) follows from (3_), and

(53)

for the existence of the intermediate region.

Iv

ten being helium.

x 106 OK) we have

x 107 cm/sec.

= 7 x 1010 cm,

gm for one atom in

To see where the solar corona falls• put &

-- 10-242.19 x 1015 2,/sec2 and put M 2.06 x= cm •

Then for a moderate temperature IN' _'/Eo "_ -- 10 ( _ = 1.6

_1 =25.4, C_ =1.48x 107cm/sec, (:C_) =o.{J _

The requirement (53) for the existence of the intermediate region becomes

No >> J.  ,iO .

Observation suggests that /_ is somewhere in the vicinity of 108/cm 3. Raising

relaxes the requirement on _"/o but we cannot go very far toward

increasing "-T'_ because of the requirement (51). For the marginal case, that
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w,/c, i assmallos S (7o ×to'

under transient conditions at the peak of solar activity, we have

2.1x 107cm/sec, CC_,) =1.32x 107cm/secand

, reached only

_1 = 5, Co

It is observed that J_o exceeds this value, but whether it exceeds 0.3 x 108/cm 3

An

by a large enough amount for a long enough period of time to produce_intermedlate

region, we cannot say. It would be extremely interesting to see the phenomenon of an

intermediate region in the solar corona sometime, somewhere beyond a distance of

a few solar radii, but the numbers do not make it look very hopeful. Certainly any

temporary intermediate region in the solar corona would be of limited radial extent,

i.e. _3 only a little larger than _S..

It is not difficult to imagine stars with weaker gravitational fields

and larger radii, so that I_/CQ _ is smaller for a given value of
¢.L_t

Iv _/ _:_ _ , in whlch_the inequality (53) is easily satisfied. Perhaps some

giant stars qualify for this condition. Then an intermediate region with a velocity

maximum at :_ _ would result. In some extreme case it is conceivable that N •

is so large that v (oo) might be only a few km/sec with the adiabatic solutions

(42) and (43) extending far into space.
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2. Formal Discusslon

With the substitutions

r /

N,v°a= Hw "_

(54)

(55)

(56)

the energy equation (4) may be written [n the reduced form

%_/" _-Z-Y= ×-Y - U
_X (S7)
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Consider the integration of (57) neglecting the velocity

it is readily seen that /_ approaches /_== where

d . As _ -"_

=v.="M,, N._oa'Mw' (58)

Then since c _(oo) _-- O , it follows that YCXco) -- O . Since

approaches zero as No becomes large, it is evident that _ ®

Thus the limiting solution, as No _ o,o , passes through the origin

'T'(O) = O. It is readily shown by repeated iteration of (57), taking advantage of the

smallness of the left hand slde, that the limiting solution is

y<×)_ x -_[× t×-_°'_)_'_(_- _ x"_)]_'_

•

X [J--X"'- 5X _ _zs X""_'+ _,)e, o(× ]
(59)

in the neighborhood of the origin.
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t

has the form .....

\

= × - ×o <6o)

as

is that the entire family of solutions

limiting solution (_.-----_0:_ )

demonstrate this convergence for small

lles a very small distance

An important point to note before discussing Y(X) at Jarge jX

tend to converge rapidly toward theY(X)

as X increases from _< ,,,,,

X ,',, , consider a solution Y(X)

below the/imitng solution X (X) at

• To

which

Y-- t_

Tie•

"r'(x.)- X (×,) -

Let _ _< X_ y':(>(,)

let the solution be represented by

. ,n the neighborhood of LX,, Y('X,) 7

Y(X) = Y_(X) - i,, (X)

so that . Make _ _ so smatl th[at (59) _re'daces to: _,
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"_X - L - I ---sZX

upon neglecting all terms second order in h • The desired solution of this

equation is

h(x)

X( _sSJ

e ezp z

Since X_. _< t

rapidly with increasing

the limiting solution

Now consider the solution of (57) as

• it is obvious that

(61)

decreases extremely

/_ , demonstrating the convergence of the solution toward

Y1 (X) for . No --'-_ _o .

X becomes large• This asymptotic

limit is of physical interest because for moderate or low coronal temperature•

by_'/Co z _ .1. and X becomes large toward the base of the corona•
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The asymptotlc form of _"C Y0

(571bynotingthat Y' < < X

for large X

. The result is

is readily obtained from

(62)

This asymptotic form is valid for all large N_ , as a consequence of the

convergence of the solutions toward the limiting solution.

The limiting solution was computed from (57) by numerical methods and is shown in

Fig. 4. The other solutions of (57), which do not pass through the orlgln, are indicated in

Fig. 4 by the short arrows which represent the slope ':/'_/J X at varlou,_ points in ;_

the (_ _ Y) plane. The convergence toward the limiting solution is clearly

evident.

The formal asymptotic form (62) reduces directly to (32) upon neglecting F'-_

in (54). This gives formal proof of (33) for large /X_ and _' _" / _ o _"o / •

Note that (54) - (56) can be considerably reduced through application of (33).

region, then, is described by (62) and extends from '_t = (7/5) "_t_J ,_

pondlng to _ --" _a as defined in (34), to the base of the corona

..I,

When X

The near

corres-

becomes small compared to _ _. , the solution lies close

to the expansion of the limiting form given by (59). The leading term of this expansion !....

gives simply y _" _ which reduces immediately to (39). The soJution follows
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Y _ X until X nears

lies between O(X. ) and /_j.

As /_ begins to approach _<

solution and follows the asymptotic form (60).

X

With the aid of (33) we write

. The intermediate region• then•

the solution veers away from the limiting

where• it will be remembered• is the total energy flux

Substituting this into (60) and neglecting terms second order in

L . This• it is readily shown that

constitutes the far region.

Now consider the effect of including L,] in (57).

is to decrease _ _r_/a/X slightly. The decrease in

The effect of

Y/ X

at

is

negligible in the near region and throughout much of the intermediate region. The decrease

becomes significant only in the outer portions of the intermediate region and in the far

region, The result is that the solution Y ( X ) which includes O starts

out at large _ essentially coincident with_the solution neglecting _.J .

As the far region is approached, it declines less steeply than the solutions which neglect

U . At small _ the kinetic energy U approakhes a constant value,

which when subtracted from _"_ leaves only the _:l:_nductlon flux /_ .
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(48) with

that X _ , at which

solution of (57) including

Thus /_, m must be modified by replacing _"_ on the right hand side of

. It was noted earlier that _ _" _ _ , with the result

Y vanishes, is moved much closer to the origin. The

U is sketched in Fig. 5. Noting that I_ _ C)

as No _ OO r it is evident in this limit that the solution including

converges to the solution neglecting _ , and both converge to the solution

(59) through the origin.

V. THE ROLE OF THE VARIATION OF _ (T_

The discussion has thus far been confined to the hypothetical case of a

stellar corona in which energy is transported beyond the base of the corona only by

thermal conduction for which _ (-r") is proportional to -T "s/'. There are

obviously many other possible forms for the conductivity _ (, -r') in the cir-

cumstances encountered in stellar coronas. For instance transverse and disordered

magnetic fields may cause I_("I") to diminish outward from the star more rapidly

than -T -S/_" . Or if we admit the possibility of un'ionized gas in, say, the outer

atmosphere of a red giant, then /_('[') may decline more slowly than -T" s/l.

VI. It is not possible at the present time to statebeing proportional only to -

precisely just what effects in

except that there are several effects suggesting that

t_'("T',) should occur in the solar corona, etc.,

("r) falls below the value

given by (2) beyond some distance of the order of 0.1 a.u. or more. (See section VI.)

Thus at the present time the best approach would seem to be an inquiry into the general

effects of deviation of _('T') from (2). Then when we understand the consequences

of variation in _(-r) in a general way it will be possible to state the results
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of specific variations in _ (T) whenthey becomeknown.

Severaleffects turn up in the general inquiry, the principal of which

is that reduction in t_ C"T') beyond distances of several stellar radii may have

the effect of enhancing coronal expansion. In fact it will be shown that a steady out-

ward expansion of a stellar corona follows from the hydrodynamic equations if, and

only if, I_ ('T',_ declines outward from the star at a suitably rapid rate.

1. Effects of the Form of _(T)

The simplest varlation in _ (7") is a variaHon in the proportionality

constant J_, . It is readily seen from (4) that /_ • appears only in the

rat|o _/o / ¢, , so a reductlon in ¢, is equivalent to an increase in

_ , which was discussed at some length in the preceding section.

The next simplest vaHatlons in 1__-r') are either to ;ntroduce a

sharp cutoff in I_(TI at some fixed radial distance from the star or to assume

that the functional dependence of t_ _'r)

•-r -s/I . The effects of a cutoff in

next paragraph heading.

of (,n-).

on "/" is something other than

(T) are considered under the

The present discussion centers on the functional importance

Let it be assumed that

where

conductivity,

ionized gas.

= ]

is a numerical constant, with the values

_" --'-- -_ for an un-lonlzed gas, and

To demonstrate the necessary conditions on

(64)

_" _ O for uniform

_ _'/1. Br a fully

_" for coronal expansion
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L
consider the case that the temperature C= or the density

of the corona is small enough that the terms involving N_ va

side of (4) may be neglected. Then subject to the boundary conditions that

C= 1 and f- _ C_ , integration yields

N= at the base

on the right hand

c'Cl)

1.

ii

(65)

and

The discussion of the hydrodynamic momentum equation in Paper I shows that a corona

will expand to supersonic velocity if; J:n ! _,_ _ . the temperature decreases outward

less rapidly than _-/// _ .

is necessary and sufficient that

into a supersonic stellar wind.

A more rapid decline gives a static corona. Thus it

_ O in order for the corona to expand

The corona is static if the conductivity is independent

of the temperature or if the conductivity increases with decreasing temperature.

There are some circumstances when _ (m) may be more a Function

of position than of the local temperature. Then putting _ (T,) _ _o

we have

=
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for _ _ ".t. .* The corona will expand to yield a supersonic stellar wind only

if _ _ 0 , i.e. only if I_ decllnes outward from the star.

The physical explanation for the outward decllning thermal conductivity

to favor corona/expansion is simple and straightforward. The coronal expanslon leading

to the steJlar wind occurs in the region between the energy source at the base of the

corona and the energy slnk at _ =_ _ where the temperature vanishes.

If the conductivity declines at large radial distance, the effect is to sever the con-

nection with the cold _ _ O0 . The result is a relatively slow outward

temperature decllne, leadlng to rapid coronal expansion. On the other hand, if the

conductlvlty is large at large radlal dlstance, the coronal thermal energy drains

rapidly to _ _ 0:3 . The result is a rapid outward temperature decline, which

discourages coronal expanslon. Of course, the heap flow from the base of the corona

is larger when the conductlvlty is large at large radial distance, but the flow passes

to _: =--- _0 and does not serve to enhance coronal expansion.

It would be a straightforward matter to repeat the calculations of the

preceding sections for values of _ other than the .m/7- already

consldered, but the complete calculation is probably not of sufficient interest at the

* If _ _°- 4_ _ the temperature fallsto zero at finite _ , at which

point a heat slnk is implied. This is physically unrealistic for the present discussion.
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present time to justify presenting it here in its entirety. The low density approximation

has already been given. For the low temperature and high density approximations it

is interesting to note that

l,

c_

-
(67)

in the near region. The efflux of coronal gas is given by

/W. oa t vi '" ::  Co -F.

in analogy to (33). In the far region c I. (i) is proportional to _ .#./(l# _')
J

which is lust half as fast a decline as in the near region. Of course ¢ I. (!i)

is still proportional to .(-/ _ in the intermediate region of the high density

approximation. It is interesting to note that when _" _/--. _- , the intermediate

region disappears for the reason that C I.( _ ) declines at least as rapidly as

9¢ l/ ]_ Then with

S C l( I)Iz remains less than

at the base of the corona_

iv y _: until the far region is reached where

becomes non-negliglble.

The case ' _ I _ is of formal mathematical interest because the

energy equation in the hlgh density approximation (omitting I) )

can be integrated in closed form (see Appendix II). When _/-- O the energy



equation can be integrated because

low temperatures _Lv _"/5 c=

.
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Vo

Effects of a Cutoff of _ (T)

is identically zero for the moderate and

considered here.

There are a number of physical reasons, discussed a little later, why beyond

some suitably large distance from the star _ (T) may decline rather considerably

below the value given by (2). If the decline should be abrupt, its effects can be

approximated by introducing a sharp cutoff at some suitable radial distance

up to which /_(-1") has its normal value and beyond which /)'(7")

zero. Such an idealized form for 1_IT)

the physical consequences of a rapid decline in

formof

coronal expansion,

beyond _5"

f,
is identically

lends itself to simple presentation of

It is evident from the previous discussion of the effects of the analytical

that cutting off _ ('7-) at some distance _. may enhance

To illustrate the effects note that the motion of the coronal gas

is completely adiabatic, because we are considering the hypothetical

-_. can expand only if

The really interesting case iswhen

in a corona of low density.

c _ at the base of the adiabatic

>> co'

Then in the low density approximation (dropping all terms

corona beyond

corona exceeds

case that no energy source or sink besides thermal conduction is available above the

base of the corona. The properties of an adiabatic corona have been discussed elsewhere

(Parker, 1960). Briefly, the atmosphere will be static for moderate and low coronal

temperatures unless _. > _ _ _/_" co _" : This may be shown by noting

that the temperature in a static corona will be uniform out to _'_. ; the adiabatic
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except _ on the right handside of (4)) integration of eqn. (4) yields the

temperaturedistribution

__ --- Ca

zn

(69)

and the energy flux

(70)

at

low corona and entirely by convection beyond _ ,where C_(_

obta_oedfromtheadiabaticcond"_on,,_( _)+ s _'(_) - z_, y#

= ¢ _ (_.o) At _ =- c:o the energy flux has all been converted into

. The energy is transported entirely by thermal conduction in the

is

klnetic energy. Thus

= _ _No,,oa.-M,,,,_.= No_o_- M,.,'-(oo). (71)

Now the velocity v ( oo )

by the methods outlined in Paper I. The temperature

itself so that v ( co ) in (71) will lead to an

value given by (70). In the limit as No

can be computed from

c z C _",) will adjust

which is equal to the

becomes small it is evident that
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must become small and c_'_ " _.) _') C.__" , i.e. the corona becomes isothermal

in C _-} _ _) , with a temperature c_ _" . The dynamics of an isothermal-

adiabatic atmosphere have been treated elsewhere (Parker, 1960)o A more interesting

limit is obtained however if

permitted to become large.

C _ to

/_/o is fixed at some small value and _ is

Then c _'( _ ) , as given by (69), declines rapidly from

)C ( _ close to the star and remains nearly isothermal with a

temperature near c_'(_ _'_) from there all the way out to _ For an

approximately isothermal atmosphere it is readily shown from the momentum equation

that

for large

velocity

velocity

_[ .* We note that for a given value of c (_) , the

v ( _o ) increases without bound as _ becomes large. The

V, , on the other hand is essentially independent of _ when

is large. Hence, it may be seen that with small _Jo (71) gives

F'o . Combining (70) and (71) yields

* The approximations involved are (a) that

near the star, where r. (_) _ C,

as _ becomes comparable to

v _-S ¢ - 2w /

there.

C(_) is not precisely C (,_)

and (b) ¢._ _ ._ isnot precisely C (_:_)

_. because the convection term

on the right hand side of (4) is not negligible

Neither of these approximations is essential tO the present argument, however.
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Novo '- J-%

f,-i t
CQ '1" •

(73)

For any given c t (_) the left hand slcle of this equation can be made as

large as desired by making _ sufficiently large. Thus, no matter how small

may be N o , the left hand side of (73) can be made slgnificantly greater than

zero, with the result that Ct[ _)

to be significantly less than C=

appears on the right hand side to such a high power that if ¢ ( _1,_

even ten percent less than C,, , the term in C_'( _)/_" may

be neglected and

on the right hand side is requirecl by (73)

. Note however that C.a ( _)/Co _"

is

This equation tells us that for small /XJo , almost the entire energy flux

2 i_., s, "To / "7 is converted into kinetic energy A. Consequently, if

/N/o is small, the resulting v ( oo ) may be enormous. Further, the

velocity v_ is determined principally by ¢' _ _:/f.) and diminishes
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, as noted earlier;

Then if _-

becomes large without limit and

is caused to become large without limit, V ( O_ _ in (72)

C ( :_. _ diminishes in order to reduce vo

sufficiently to keep (74) satisfied. The point of this is that, within the framework of

the formal heat flow equation (4), the cutoff of _ C Z_) at some extremely large

_. can lead to an arbitrarily large stellar wind velocityradial distance

v (oo)

only effect of

. This is true independently of the density

_'_ o is that for a larger N,, ,

correspondingly smaller so that C C _( _ is smaller and

order to achieve the same V (c_)

Vl. SUMMARY AND DISCUSSION

N Q . The

V, must be

larger in

The present paper has concerned itself with the dynamics of the stellar

corona in which heat is supplied above the base of the corona solely by thermal

conduction. The corona of the sun may, or may not, be an example of pure conductive

heating. One of the first points that should be taken up in the discussion of the

formal mathematical examples presented above is the question of the general validity

of eqn. (2) for the thermal conductivity. Eqn. (2)was derived for an infinitesimal

heat flow in the direction parallel to magnetic field (Chapman and Cowling, 1958).

Taking these two assumptions one at a time, we note that an absolute upper limit

(75)
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to the heat flux is obtained by assuming that all of the electrons are moving in the

direction of the heat flow with the rms thermal velocity.

would thenbe Q_Nk"_-//_. )( "_."/-_n,._ ) y_

The resulting heat flux

ergs/cm 2 sac. This maximum

energy transport may be rather small if the coronal density is very low, and eqn.(2)

is not valid if the actual flux begins to approach the maximum.

a stellar corona is of the general order of _ ("7") r -7- lit )

dlan, at a radial distance r provided that the corona is dense enough to

transport it. We must require then that

The heat flux in

ergs/sec stera-

(T) (76)

If it be assumed that

numerical form

is given by (2);the inequality may be written in the

This inequality must be satisfied or else the effective value of the thermal conductivity

will be depressed below eqn. (2); the effective conductivity _ ( T,_ will be

enough so that (76) is satisfied. Now the numerical values indicate that except in

an extremely tenuous corona (77) will be satisfied near the star.

unless "T(.r_ drops off as fast as _.//,, b/_. at large

not be satisfied as

On the other hand

?" , (77) will

f" _ _o because h_ (r) is asymptotically



proportional to .t./r _"

values for the solar corona.
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. These circumstances may be illustrated by the numerical

In the low corona where t_ = 106 km and

Z ev o K-. 106 the inequality is N _ 6 x 104/cm 3, which is satisfied by a

1013large margin. On the other hand, at the orbit of Earth where r = 1.5 x cm

and "-T-(r") seems to be of the general order of 105 °K (Bonetti, et al, 1962;

Neugebauer and Snyder, 1962) the inequality becomes _ _,_ _ /_,_ 3

which is just barely satisfied, if at all. Observations (see for instance Bonettl, et al,

1962) suggest that N _ 2. - 10/cm 3. A slightly higher temperature of

3 x 105 OK yields N >> 24/cm 3, whic h is not satisfied. The conclusion is that,

in the absence of any other effects, the low density of the solar wind must lead to a

depression of the thermal conductivity below eqn. (2) at least at some distance

beyond the orbit of Earth. The conductivity may often be depressed even inside the

orbit of Earth. More complete and quantitative temperature and density measurements

of the interplanetary plasma will have to be carried out before more can be said.

Whatever may be the circumstances for the sun, it is evident that some

caution must be exercised in application of the formal examples worked out in the

text. The low density approximation and the cutoff with _ _ arbitrarily large

are particularly suspect when it comes to actual models of existing coronas. As

was stated in the beginning, the purpose of the formal models has been to illustrate

the properties of the formal heat flow and momentum equations in a hypothetical

stellar corona, concerning which there have been so many mistaken ideas.

The second effect on the thermal conductivity is the well known

channeling by magnetic fields. The reductlonof the effective thermal conductivity
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in the direction perpendicular to the local magnetic field is by the factor

"/- c"J_e oa (Chapman and Cowling, 1958) when the electrons are res-

ponslble for most of the thermal conduction. Here r.._c_ is the electron cyclotron

frequency and lk oe. is the deflection time for Coulomb collisions (Spltzer,

1956). When this reduction is by more than a factor of 102 it can be shown

(Rosenbluth and Kaufmann, 1958; Vaughn-Willlams and Haas, 1961)that the ions take

over from the electrons and the reduction is not as large as the factor (_. "/-

In the low solar corona where /_ "_ I O _/c_ "_

between electron Coulomb collisions is of the order of 10 -1 sec, whereas a magnetic

field of 1 gauss yields a cyclotron frequency of the order of 10 7 radlans/sec. The

reduction of the thermal conductivity perpendicular to the field is clearly enormous.

The same is true at the orbit of Earth and beyond. Altogether then, we may conclude

that in stellar coronas and stellar winds the flow of energy by thermal conduction

is channelled almost entirely along the magnetic fields. It follows at once that if

the lines of force should become sinuous and generally non-radial, as they are

observed to be in interplanetary space (McCracken, 1962; Smith et al, 1963)1 the

effective path length will be increased and the cross section decreased, with a

corresponding reduction in heat transport. It follows that if the field should become

completely_organlzed, as it appears to be at some distance beyond the orbit of

Earth (Meyer, et al, 1956), the flow of heat might be cut off altogether. The result

of reducing or cuttlng off thermal conduction in interplanetary space was shown to

enhance the expansion of the corona.

Now to summarize the results of the formal calculations. Assuming that

the thermal conductivity is of the general form given by (2) it was shown that the

,)Z LDe, ,C_¢e

the time
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_2h
temperature in a corona of extremely low density declines outward like ¢" o

At higher densities but for low temperature, a near region where the temperature

declines llke r" " 4/7 appears at the base of the corona and extends for some

distance outward before the decline goes over to r" " _/7 . If the density

is high and the temperature is not low, an intermediate region where the temperature

declines like t" " :_ appears between the near r " _h and far r ° 2/_

regions. It was shown, from the fact that a sufficiently low coronal temperature

reduces all these cases to the first, that the energy flow to ¢" -.- oo is non-

vanishing. Hence in all cases the coronal expansion becomes supersonic at large r"

to form a stellar wind. It was shown that the tendency of thermal conductivity to

decline with decreasing temperature plays an essential role in bringing about

supersonic coronal expansion. Coronal expansion is generally enhanced by any :

mechanism which tends to decrease the effective thermal conductivity at large dis-

tances from the star. It can be asserted that so long as thermal conductivity is

present the temperature declines outward from a star enough less rapidly than ,t/p

that a supersonic stellar wind is the result. Only in the limit of large _/=/_'_Z-)

is there a possibility of limiting coronal expansion to subsonic velocities. This

limiting case may perhaps prove to be of interest,ln ti_e expansion of the coronas

of some red giants where the low coronal temperature leads to very small _('T.._

Numerical estimates for the solar corona suggest that it is neither so

tenuous, nor so cool, now so dense that it can be approximated by any of the three

cases cited above. Nor is it so hot as to approach the adiabatic case. Rather

the sun seems to lie solidly in the middle ground where much, butnot all, of the

energy transported by thermal conduction is consumed in the expansion. The
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corona is hot enough that the ultimate expansion velocity is not only supersonic but

it is comparable to the gravitational escape velocity from the base of the corona.

Thus, simple models, such as the isothermal corona, or the isothermal-adlabatlc corona

(Parker, 1958, 1960) may be used to fit empirical data, but numerical methods, such

as employed by Noble and Scarf (1963), are required to deduce quantitative Conduction

models of the solar corona and solar wlnd from the mass, momentum, and energy

conservation equations.

Several of the qualitative conclusions resulting from the high and low

density approximations may prove to be of interest for understanding the changes

in the solar corona and solar wind over the 11 or 22-year cycle of solar activity.

For instance, for a Fixed coronal temperature To

other hand

fixed

_v

_/"/_ ("/_o) the stellar wlnd veloclty varies approximately as

the stellar wind velocity

declines to zero in the limit as N. _ _o . On the

( col becomes comparable to the gravitational escape velocity

in the limit as N_ becomes small. Note also that for

'/7.
-7-+.

Now it is observed that both the temperature and the density in the low solar

corona tend to decline during the years of mlnimum solar activity, particularly at

h!_k solar latitudes. One expects a slmultaneous decline in the density of the

solar wind and a decline in the solar wind flux No vo ¢_ _ . But it

is not at all clear to what extent the solar wind velocity will decline, because

the decline of No tends to increase the velocity and the decline of To

tends to decrease the velocity. There is the additional possibility that with the

declinlng density the thermal conductivity may cut off more completely at, say,

oneor two a.u., whlch would further enhance v (oo _ . It is not
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inconceivable that the net effect could bean increase in the solar wind velocity

sometime during the years of low solar activity and a decrease of velocity sometime

during the years of high solar activity. Such an effect might seem surprising, but

at the present moment we cannot rule it out. Observations over the next 22-year

solar cycle would settle the matter.

the relation between No and

The fundar_ental theoretical question concerns

-_G in a stellar corona. Presumably No

and -r"_ are determined by the wave dissipation which heats the corona, and

while considerable progress has been made in this field (see for instance Osterbrock,

1961 and Whltaker, 1963 and references therein) there is not yet any quantitative

result of which we can be sure.

When we come to consider the coronas of stars which are different from

the sun, only the most general speculations can be made (see for instance Parker,

1960, 1963b). Let it be assumed that there are stars in which the energy transport

outward from the base of the corona is principally thermal conduction. From the

general restriction that Iv _/Co L _ 5 it follows that ¢0z must

be very small for giant stars, and probably very large for dwarfs. The total heat

flow is proportional to )_ _-Fo ) a _ ,so that if eo _ .1 / a

we have that the heat flow is proportional to _ - s/t. . This may be very

small for giants and large for dwarfs, suggesting that coronal expansion in giants

may tend to fall into the high density category, and dwarfs into the low density

and/'or the low temperature category. It would be expected that some of the par-

ticularly active stars might fall into the high temperature category with a violent

and nearly adiabatic expansion.
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Then

APPENDIX I

In order to evaluate the integral defined in eqn. (24) for the temperature

C_ _) given by (11), put

Note that by expanding the integrand in ascending powers of z

shown that

2

it can be

when

When

_" i, Here F- represents the hypergeometric function.

exceeds 1.0, it is convenient to use the well known relation
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i F(_,_ _- _.).I

A similar expression may be used when "_- exceeds 1,0.

and n _ -._/7 , it follows that

With _-" "'_/7

__,

"> ,t. , then

• ,, O- _)I_ __ _o+(_-_)_/_;

:¢ - r (_/ v) " .
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For purposes of numerical computation note that

- ___Z9_c + ___.

&oO?5 {=7Z2 8

Since according to (16)we have (_ - C_) _. 7_ _ > ,_ _ it follows

_a_w,__ • C_/(Z-C_)_,_

for 0 < (_ - _,_/_) and



k
-61 -

L

ah

FfxxiD mfJV?)

To evaluate the integral defined in eqn.(24) for the temperature

given by (11),

put

Then

II m Ui
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It follows at once that

I
w

7_.'(_.Q) _'"
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APPENDIX II

When the thermal conductivity _ ('T) is proportional to the

first power of the temperature, the energy equation may be written

(A1)

where

;k
c

/ = @ --_ (A2)

I,-

(A3)

and

'1.

= ----
2_ _

(A4)

with

(AS)
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To integrate this differential equation let

The result may be written

_y ---" V "_c,. and

(_',*-z) ''_,_,-, z) '_ -- ( (A6)

where C is the integration constant and

v_- -: _,_ )_
t

The solutions through the origin are C -_ c_ and y -

)/ -- - v L _.. . The solution of physical interest is the one for which c

O . This requires that _, vanish at "_ -- 3r.._ where

(AT)

(A8)

in which case

Yd. vz v I .t V_
C = v, v_ _= (A9)

For a dense corona,

Hence (_ _/ t

%= ( ( ._. as a consequence of the smallness of _.

and the solution rapidly approaches the limiting solution
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_, I= V_. "_ as "3(. increases.

(AIO)

In the neighborhood of "_r_m , the solutlon approximates to

[ z :<..(.->--
(All)

which is to say that C I.

The boundary condition

_ l/z
i in the far region.

I.
--' C._ serves to determine

for a given iv l/Co _" and _l . The quantity _._

can be determined only by simultaneous solution with the momentum approximation.

In the low density approximation this is a simple matter, as was pointed out in the
eg

text. In the high density approximation it may <, be effec_for moderate or low

coronal temperatures, for in that case 0r..a,, , which is nonvanlshing for all

finite I'k/c, , goes to zero in the limit as /_o --_ _ and (A6) reduces to

(A 12)
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where C_ C. z _ ---- t
)

shown with the a.id of (A7) that
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we have x = (_ and _ _

Then with _ _ _ _S coyz_v_ it is readily

t

- . I

(13)

which reduces to

/_o_o _ M _'__ __" (14)

for moderate or low coronal temperatures.

since _" r= .( in the present case.

the useful relation

This is in agreement with (68) in the text

Combining (A4) and (A13) there results

w
_.._." I/_. -)

in the limit of large _o

The solution of the energy equation for _"=- .I. has the interesting

property that the temperature is proportional to ._/_ in both the near region

and the intermediate region. Thus
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(AIS}

all the way to the neighborhood of oc_ where the far region begins. This may

be seen from (67) or from (A12). It is readily shown from eqn. (12) of Paper I that

throughout this entire region

t
(A16)

and

(AIT)

The velocity becomes comparable to in the general vicinity of

o/_'_. "_ (AI8)
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i
i I i|11| i

Vc s/z

The solutions of (A5), with

for the moderate coronal temperature

and must be included in the energy equation from _ z on and out to

The critical point lies at some radial distance of the same order as _.

the expansion velocity is supersonic beyond.

C

V_. = 0.883. The limiting case of very high coronal density corresponds

to the solution through the origin,

for this case is 11.3. Solutions for

and

given by (A9) are plotted in Fig. 6

= 0.25, for which _. = 1.133,

_== = O . The value of _v_'/(.= _"

3c== > O (finite /_/= ) are plotted

in Fig. 6 to show their rapid convergence toward the limiting solution (A12)with

increasing _..
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FIGURE CAPTIONS

Fig. 1. Aplotof _c., Vl Coob /c= , v I (l_)/c,

in the low temperature approximation as a function of

ill
• and (,.t#,l"/tli i') I

for the three cases _._ -- 0, 4/7, and 1.0. The case _ = 0 represents

diversion of only a vanishing portion of the energy transported by thermal conduction

into lifting the expanding corona in the gravitational field of the star; _ ----

represents diversion of all but a vanishing portion of the energy transported by

thermal conduction; (_) = 4/'7 represents an intermediate case where about half

the conduction energy is dlverted into coronal expansion. The break in the curve

of Cv_/ C._'_i 9"_ for _) = 4/7 results from the use of the asymptotic

expression for w _'/_ _ > _ 0 for the purpose of illustrating the order of

the approximation involved.

Fig. 2. A plot of the asymptotic density t_ (_') I _' for large

temperature approximation as a function of _v _'/_g .

in the low

Fig. 3. A plot of the energy flux

in the low density approximation as a function of temperature -'T"o

son with the energy _/o Vo a _" _ _ _" for various values of

consumed in lifting an isothermal expanding corona of the same temperature

_. /[. a "_. / 7 from the base of the corona

in compari-

N.

7".

in the gravitational field of the star.

(a) _ m ._ _--- 7x 105kmand(b)

Fig. 4. A plot of the limiting solutlon Yl _X)

lines indicate the tangents to the family of solutions of (57) (neglecting U

The numerical values apply to the sun with

as /_/. .-_ _o . The short

)

through the positions of the lines.
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Fig. 5. The light lines represent a sketch of the solutions of (57) neglecting U , as

approximated by (59) and (61). The heavy llne illustrates how the solution of (57)

including k,} cuts across those solutions and reaches the X--axls at a small

value of X.

Fig. 6. A plot of /Y (_)

= 0.25 and for

from (AS) and (A9)for the intermediate value

:x:== = 0, 0.01 0.02, etc.
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